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Abstract
The photonic band structures and transmission spectra of serial loop
structures (SLSs), made of loops pasted together with segments of finite length,
are investigated experimentally and theoretically. These monomode structures,
composed of one-dimensional dielectric materials, may exhibit large stop bands
where the propagation of electromagnetic waves is forbidden. The width of
these band gaps depends on the geometrical and compositional parameters of
the structure and may be drastically increased in a tandem geometry made up
of several successive SLSs which differ in their physical characteristics. These
SLSs may have potential applications as ultrawide-band filters.

The propagation of electromagnetic waves in heterogeneous materials has received in recent
years a great deal of attention. Of particular interest is the existence of photonic band gaps in
the transmission spectra of artificial periodic structures with a spatially dependent dielectric
constant. Various one-dimensional (1D), 2D, and 3D structures of these so-called photonic
crystals have been studied [1–7]. In the forbidden bands, electromagnetic modes, spontaneous
emission, and zero-point fluctuations are all absent [2]. The larger the band gaps, the more
pronounced these properties are. In previous papers, we proposed [8, 9] a model of a 1D
photonic crystal exhibiting very narrow pass bands separated by large forbidden bands. This
model geometry is composed of an infinite 1D waveguide (the backbone) along which stars
of N ′ finite side branches are grafted at N equidistant sites, N and N ′ being integers. The
physical characteristics of this star waveguide are the periodicity, i.e. the distance between two
sites, the length of each grafted branch, and the relative dielectric permittivity of the materials
constituting the backbone and the side branches. The 1D nature of the model requires the two
5 Author to whom any correspondence should be addressed.
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characteristic lengths to be very much greater than the diameter of the backbone and the side
branches. Thus only monomode propagation of electromagnetic waves needs to be considered
in these networked waveguides. The stop bands originate from both the periodicity of the
system and the states of the grafted branches which play the role of resonators. The width of
the band gaps strongly depends on the contrast between the two characteristic lengths and the
ratio between the two dielectric constants. Nevertheless, relatively large forbidden bands still
remain when the two constituent materials are identical. This offers the possibility of photonic
band-gap engineering in homogeneous materials, by tailoring their geometries.

In this paper, we propose a quasi-1D geometry, called serial loop structure (SLS), for a
monomode networked waveguide. Such a structure may exhibit new features in comparison
with star waveguides, such as the existence of larger gaps and the avoidance of the constraint
on the boundary condition at the end of the side branches, which could be of potential interest
for optical waveguide structures [10]. These features are essentially due to the loop structure,
which is quite different from the case of a simple resonator [8, 9]. We report calculated band
structures and transmission coefficients. We also show that the width of the band gaps may be
enlarged by coupling several SLSs of different physical characteristics. Theoretical results are
compared with transmission spectra measured with structures constituted of ordinary coaxial
cables working in the frequency range of 1–500 MHz.

The 1D infinite SLS can be modelled as an infinite number of unit cells pasted together.
In each unit cell, the two arms of the ring have different lengths d2 and d3. This results in a
loop of length d2 + d3 (see figure 1(a)) which is pasted to a segment of length d1. We focus in
this paper on homogeneous SLSs where the media 1, 2, and 3 are made of the same material,
characterized by its relative dielectric permittivity ε. The dispersion relation of the infinite
SLS, which relates the angular frequency ω to the Bloch wavevector k, can be derived using
the Green function method [11]. It can be written as cos(kd) = η(ω) where d is the period of
the structure and

η = 1
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2
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Here L = d2 + d3, �L = d2 − d3, α = ω
√

ε/c, and c is the speed of light in vacuum.
Figure 1(b) displays the projected band structure (frequency ω/2π versus �L) for an

infinite SLS for given values of L and d1 such that L = 1 m and d1 = 0.5 m. The shaded
areas, corresponding to frequencies for which |η| < 1, represent bulk bands where waves
are allowed to propagate in the structure. These areas are separated by minigaps where the
wave propagation is prohibited. Inside these gaps, the dashed lines show the frequencies for
which the denominator of η (equation (1)) vanishes: the dashed horizontal and curved lines,
which correspond to the vanishing of sin(αL/2) and cos(α�L/2) respectively [12], define
the frequencies at which the transmission through a single loop becomes exactly equal to
zero. In figure 1(b), one can distinguish two types of minigap: those of lozenge pattern that
originate from the crossings of the zero-transmission lines; and the gaps around 100, 300, or
500 MHz (occurring for any value of �L) that are related to the periodicity of the structure.
One interesting point to notice in the band structure of figure 1(b) is the fact that, at certain
values of �L (for instance �L ∼ 0.25 m), one can obtain a series of narrow minibands
separated by large gaps; this is because the points at which the minibands close align more or
less vertically in such a way that a few successive bands may become very narrow.

We now turn to the study of the transmission probability. We start with a study of a simple
example, namely a waveguide consisting of a simple asymmetric loop. The transmission
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Figure 1. (a) A schematic diagram of the 1D SLS. The 1D media constituting the loop and the finite
segments are assumed to be non-magnetic, isotropic, dielectric materials and are designated by an
index i with i = 1, 2, or 3. The lengths of the three wires are denoted as d1, d2, and d3 respectively.
(b) The projected band structure of the SLS as a function of �L = d2 − d3 for d1 = 0.5 m and
L = d2 + d3 = 1 m. The shaded areas represent the bulk bands. The dashed curves indicate the
frequencies for which the denominator of η (equation (1)) vanishes.

coefficient T can be written as

T =
∣∣∣∣ 2(S2 + S3)S2 S3

(C2 S3 + C3S2 + S2 S3)2 − (S2 + S3)2

∣∣∣∣
2

(2)

where Ci = cosh(α′di), Si = sinh(α′di), α′ = jα, and j = √−1. The transmission is equal
to zero only when S2 + S3 = 0, which leads to the vanishing of either sin( αL

2 ) or cos( α �L
2 ).

The zero-transmission frequencies, corresponding to the eigenmodes of a single loop, are thus
given by

ωm = c√
ε
(2m + 1)

π

�L
(3)

and

ωm′ = c√
ε

2m ′π
L

, (4)

m and m ′ being integers.
In the particular case of a symmetric loop (d2 = d3,�L = 0), the transmission coefficient

becomes

T = 16

25 − 9 cos2(α′d2)
. (5)
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Figure 2. (a) Theoretical (solid curve) and experimental (dotted curve) variations of the
transmission coefficient through the same structure (figure 1(b)), containing N = 4 loops, at
�L = 0.29 m. (b) As (a), but for L = 0.5 m and �L ≈ 0.5 m. (c) As (a), but for a tandem
structure built up of the above SLSs, (a) and (b).

In contrast with the transmission coefficient of an asymmetric single loop, that of a
symmetric one never reaches zero. The latter case is similar to that in double-barrier model
systems. That is why, in symmetric SLSs, the gaps originate only from the periodicity. In
contrast, in asymmetric SLSs, the gaps are due to the conjugate effect of the periodicity and the
zero transmission associated with a single asymmetric loop, which plays the role of a resonator.

In the case where the number of asymmetric loops becomes greater than one, the zeros
of transmission enlarge into gaps. The transmission coefficient (figure 2(a)) through a finite-
size SLS containing N = 4 loops with �L = 0.29 m clearly shows the existence of wide
gaps separated by narrow bands especially at high frequencies. The theoretical transmission
coefficient (solid curve) can be directly compared with experimental measurements (dotted
curve). The experiment was performed using a tracking generator coupled to a spectrum
analyser in the frequency range up to 500 MHz. All the constituents of the waveguide were
standard 50 � coaxial cables assembled with metallic T-shaped connectors. Attenuation in the
coaxial cables was simulated in the computations by a complex relative dielectric permittivity
ε = ε′− jε′′ where j = √−1. The real part of ε is constant and equal to 2.3 while the imaginary
part was obtained from the attenuation specification data specified by the manufacturer of the
coaxial cables as a function of frequency f , i.e., ε′′ = 0.0146 f −0.47 with f in hertz. Despite
the finite number of loops in figure 2(a), the transmission approaches −30 dB in regions
corresponding to the observed gaps in the electromagnetic band structure of figure 1(b). The
small peak observed at 190 MHz in the experiment (while it does not appear in the theory)
arises because the actual length L of the loop is slightly different from the value of L = 1 m
used in the calculation. As a consequence, there is a very narrow (almost flat) band in the
dispersion curves of the actual structure at this frequency. In this respect, it is worth noticing
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Figure 3. As figure 2(b), but with a defect segment of length d f = 0.13 m in the middle of the
structure.

that the general features discussed in figure 1(b) are valid for any values of d1 and L and various
values of �L. However, the shape of the band structure changes drastically for fixed values
of d1 and �L and various values of L.

Figure 2(b) shows the transmission spectrum for another different SLS with d1 = 0.5 m
and �L ≈ L ≈ 0.5 m. This structure exhibits a large gap at frequencies lower than those
in figure 2(a). The small feature appearing in the transmission spectrum around 180 MHz
inside the large gap is associated with a flat band. It occurs because the actual length �L
of the loops is slightly different from 0.5 m and the corresponding bands have a small width
instead of being totally flat (see also figure 1(b) around the bulk band crossing points). Now,
by associating the above SLSs in tandem, one obtains (figure 2(c)) an ultrawide gap where the
transmission is cancelled over a large range of frequencies extending from 100 to 420 MHz.
The width of this gap is measured at −30 dB. In this structure, the huge gap results from the
superposition of the forbidden bands of the individual SLSs (figures 2(a), (b)). Theoretical
and experimental results are in agreement within the experimental precision limits.

If a defect is included in the structure, a localized state can be created in the gap. A
defect in a SLS can be realized by replacing a finite wire of length d1 by a segment of length
d f �= d1 in one cell of the waveguide. Figure 3 shows the measured and calculated transmission
spectrum for the structure depicted in figure 2(b) with a defect segment of length d f = 0.13 m
in the middle of this structure. The spectrum contains a peak at 120 MHz corresponding to the
localized mode associated with the defect segment. The measured values are in remarkable
agreement with theory. Let us emphasize that the frequency of the defect mode inside the
gap depends on the length of the defect segment, whereas the intensity of the peak in the
transmission spectrum depends on the number N of loops in the SLS and the localization of
the defect segment. The band structure, like the defect modes, gives rise to well defined peaks
in the delay time [13].

In conclusion, we have considered quasi-1D SLSs exhibiting very large photonic band
gaps. Compared to those in other 1D systems such as star waveguides, the gaps observed in
SLS may be significantly larger. In this study, the lengths of the finite wires were of the order
of a metre and the gaps occurred in the hyperfrequency range. However, our theoretical model
is universal and thus also valid for other frequency domains of the electromagnetic spectrum.
For example, designing SLSs working at optical frequencies requires characteristic lengths
d1, d2, and d3 of the order of micrometres. The manufacturing of micrometric devices is now
possible using high-resolution electron beam lithography [10]. Therefore, the fabrication of
SLSs working at optical frequencies should now be feasible. Let us also stress that, for star
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waveguides, an important difficulty lies in the technical realization of the boundary condition
at the free ends of the resonators, while this problem is avoided in SLSs.
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